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Uniqueness of Solutions to Dispersion Relations for Potential Scattering*
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Some properties of the dispersion relations for potential scattering are examined. It is shown that even for
a potential of 6nite extent, the dispersion and unitarity relations do not define a unique scattering amplitude,
so that they do not contain all the information that is derivable from the Schrodinger equation.

INTRODUCTION

'~DISPERSION relations connecting the real and
imaginary parts of scattering amplitudes have

been deduced from the assumptions of Lorentz in-
variance, microscopic causality, and certain symmetry
properties quite independently of any particular Hamil-
tonian. ' The connection with a model is made in the
assignment of the mass spectrum, the postulated thresh-
old behavior of the amplitudes, and in the assumed
behavior of the amplitudes for infinite mornenta. It has
been conjectured that a quantum field theory might be
completely defined by such dispersion relations together
with the unitarity condition. ' In such an approach it is
assumed that the dispersion relations, together with the
unitarity condition, contain all the relevant information
contained in the Hamiltonian, and that they yield a
unique solution if the Hamiltonian does. One would
then have a formulation of a field theory essentially in
terms of observables, which would require none of the
renormalization prescriptions of the canonical Hamil-
tonian theories.

However, this happy situation is not realized for
certain simple models for which all solutions of the
dispersion relations can be exhibited. Thus the dis-
persion-type equations that describe the "one-meson
approximation" to a static-source meson theory have
been solved by Castillejo, Dalitz, and Dyson, ' who find

that these equations have an in6nite number of solu-

tions. It is not known whether this ambiguity remains
if the static-source model is treated without the "one-
meson approximation. "This leads to an infinite number
of coupled dispersion relations for which no solution
has yet been exhibited. Similarly the two dispersion
relations obtained for the Lee model4 do not possess a
unique solution, although the Hamiltonian formulation
of this model does. Again, however, as in the "one-
meson" model, the theory is a mutilation of a canonical
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field theory, so that the significance of the nonunique-
ness is obscure.

It is therefore of interest to investigate the uniqueness
of the solution to the exact dispersion relations which
describe a reasonable, complete, and causal model,
namely the scattering of a particle by a static scalar
local potential of finite range. The Schrodinger (or
Klein-Gordon) equations can be solved to give the
scattering amplitude. Conversely the scattering ampli-
tude determines the potential' and so contains all the
information that is in the Hamiltonian. This scattering
amplitude is a function of two variables, the momentum
and the momentum transfer, and therefore is described
by a much more complicated dispersion relation than
that of the Lee model or the "one-meson approxi-
mation. " Indeed, if the scattering amplitude is expand-
able into a convergent series of partial waves, this
dispersion relation (plus the unitarity condition) decom-
poses into an infinite number of coupled nonlinear
integral equations. In addition to their multiplicity,
these integral equations diGer in an important way from
those previously studied: the inhomogeneous term need
no longer be a rational function of its argument, but
may have an essential singularity at infinity. Those
mathematical procedures which produce the spectrum
of solutions for the Lee model and the "one-meson
approximation" are not then applicable. Nevertheless it
is possible to show by specific examples that even for a
square-well potential the solutions of the dispersion
relation are not unique. Although these extra solutions
cannot correspond to the scattering from any "reason-
able" potential, they do demonstrate that the dispersion
relations and the unitarity condition do not exhaust the
content of the Hamiltonian theory.

DISPERSION RELATIONS

The assumed dispersion and unitarity relations for
the scattering of a particle by a spherically symmetric
static potential (with no bound states) are

' R. Jost and W. Kohn, Kgl. Danske Videnskab. Selskab, Mat. -
fys Medd. 27, No. 9. (1953).
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where

Imf(k, h) = d'LV8(h" +2k a')

and

we see that the remainder of the scattering amplitude
tr(k, h) must also possess "redundant poles" when
6&2M, such as to cancel those from f, (k). This does
not necessarily imply that the scattering amplitude for

Xf*(k,
~
4—cL'~)f(k,h'), (k real) (2) higher partial waves must also possess redundant poles

whenever and wherever the s-wave amplitude does.
f*(k,A) =f(—k, A), (k real). Indeed the partial wave expansion of f(k,h),

and

r
~
V(r)

~

dr is finite,

The scattering amplitude f(k,h) is a function of the
momentum k of the incident particle, and of its mo-
mentum transfer d, . The inhomogeneous term of
Eq. (1), V(&), is the Born approximation for the
scattering with momentum transfer cL, and of course
depends only upon 6 for a static local potential. The
unitarity relation (2) and the symmetry condition (3)
follow directly from the reality of the potential, but the
dispersion relation (1) holds only for certain classes of
potentials. It is a consequence of Cauchy's theorem
provided that

(a) f(k,h) is a regular function of k for fixed 6, 6 real
and Imk) 0,

(b) f(k,D) V(d)—~ as ~k~~~, Imk&~8&0,
(c) k 'f(k, h) is bounded on the real axis.

Kong' has shown that these conditions hold for each
term in a perturbation expansion of the scattering
amplitude. More generally, Khuri' has derived Eq. (1)
under the conditions

f(k,&) =P fi(k) Vi(cose), 0 real
L=O

is necessarily convergent only if
~
k

~
&M.

UNIQUENESS

Clearly one solution of the dispersion and unitarity
relations is that solution which results from solving the
Schrodinger equation with the potential that appears in
Eq. (1).If there is another solution of Eqs. (1)—(3), then
it cannot correspond to the scattering by another
potential which satisfies conditions (A) and (B), for if
it did, then it would satisfy Eq. (1) with a different
inhomogeneous term, which is impossible. Nevertheless,
alternate solutions can be constructed. Let us consider
that solution of Eqs. (1)—(3) which is also the scattering
amplitude calculated from the Schrodinger equation:
fe(k,h). We shall show that even for a square-well
potential there exist an in6nite number of other solu-
tions identical to fs(k, h) in all phase shifts except one,
which we shall take to be the s wave.

If the s-wave part of fs(k, h) has a phase shift 5s(k),
then

provided
aJ p

e 'r'~ V(r)
~
dr is finite,

fp(k, 4)—(2ik) {expL2i5s(k)j—1}
+ (2ik)—

'{expL2ib(k) j—1} (6)

is unitary and a solution of Eq. (1) if

Thus Eq. (1) has been demonstrated to .follow from
the SchrOdinger theory only for values of momentum
transfer 6&2n. For a well of finite range Eq. (1) is
valid for all 6, but, if n is bounded from above, the
Schrodinger amplitude for large momentum transfers
need not be a solution of Eq. (1).

The conditions (A) and (B) are also suflicient to
insure that the scattering amplitude for an s-wave

does not possess a "redundant pole" in the strip
0&Imk&M, where 3f is the upper bound for those
values of n which satisfy (B).' However, even if the
s-wave scattering amplitude, f, (k), does have "redun-

dant poles" in the upper half plane for Imk&~M,

f(k,A) does not for 6&2M even'if Imk ~&M. Thus if the
s-wave scattering is separated from the total amplitude
in the manner

' D. Y. Mong, Physics Department Technical Report No. 62,
University of Maryland, January 1957 (unpublished).

' N. N. Khuri (to be published).
V. Bargmann, Revs. Modern Phys. 21, 488 (1949), Appendix.

See also R. Jost, Helv. Phys. Acta 20, 256 (1947).

k '{expL2ibs(k)) —exp(2ib(k))} is a regular
function of k, which approaches zero as

~k(~~ for Imk&0.
(G)

will be a satisfactory solution provided the u; are
chosen so as to give the correct residues at the poles.

9 V. Hargrnann, Revs. Modern Phys. 21, 488 (1949),

We note first that if V—=0 then expL2i5p(k)]=ps(k) =1,
and

(k—a;) (k+a, e)
exp+i&(k) $ =g —=s(k); Imu;&0 (7)

'=i (k+a,) (k —a,*)

satisfies condition (G), so that there exist an infinite
number of solutions in addition to fe(k, h) =—0.

There is a class of potentials discussed by Bargmann'
for which Ss(k) is a rational function of k, which ap-
proaches unity as k—+oo [for example, V(r) = —Vse ""

&( (1+Pe "") 'j. Here any expression of the type

k+n„
expL2i5(k)f=s(k) 'Q, Ren„=0, Imn„&0 (8)" k —0.
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Rs(k') =E—' tan(aE), (10)

where E=k(1+X/k')'* and X/2ris is the depth of the
potential, we can exhibit several representative ex-
amples of alternate solutions, which satisfy condition
(C) and thus establish nonuniqueness, even though
they have some obvious nonphysical properties.

Exam le 1.—Consider
1+ikR(k')

expL2ifi(k) j=exp( —2ika)
1—skR(k')

This is the kind of situation which occurs in the "one-
meson approximation" and in the Lee model, at least in
the case of no cutoff, for which an infinite number of
solutions of form of Eq. (8) could be exhibited.

In general, however, the situation is a great deal more
complicated by the fact that Ss(k) may have an essen-
tial singularity at infinity. "For example, for a potential
of finite extent a, we have, quite generally,

1+ikRp(k')
Sp(k) =exp( —2iku)

1 ik—Ro(k')

where Rs(k') is a Wigner R function, "and we cannot
generate another solution of the type s(k)So(k) since
k '[s(k) —1)Ss(k) is still singular at infinity. In the
case of the square-well potential, for which

This satisfies condition (C), provided b(0. As we
approach the real axis at k=0 from above, R(ks) does
not become real, but this does not violate unitarity
because it is kR(k'), which vanishes as k approaches the
origin, that enters into expL2iB(k)] and so this is an
acceptable solution. " It is clearly unphysical because
the s-wave scattering cross section oscillates violently
near k=0; the "pathological" region may be made
arbitrarily small by choosing 6 small enough. A variety
of other types of solutions have been found but they
also have the property that 5(~)—h(0)/mw (m an
integer).

The difference between the "Bargmann potentials"
and the square well may be restated by writing the
dispersion relation for the s-wave scattering amplitude
F(k) L=F*(—k) for real k],

1 r" dk'
F(k) =G(k')+- ', . k'IF(k') I' (14)

m '~ „k'—k —ie

which may be derived from Eqs. (1)—(3) by separating
the scattering amplitude

f(k,A) =F(k) jg(k, A),
(15)

and choose
R(k') =E ' tan(bE). (12)

and noting that

dk'
F(k) —— t ImF (k')

ir" „k'—k—ie

where b(rr/2/X if there are no bound states. This
solution satisfies condition (C), provided fi) u, and
it is thus an acceptable alternative solution. It has
the physically undesirable feature that the phase shift
for (real) infinite momenta oscillates instead of vanish-
ing, but this "unreasonable" behavior cannot be ruled
out without imposing an additional condition to supple-
ment Eqs. (1)—(3). Equation (12) can be generalized
immediately to

Immi (O', A)

because the left-hand side is independent of 6 and even
in k. LThe unitarity condition yields the relation
ImF(k) =k~F(k) ~'.j For the cases of no potential and
the "Bargmann potential, "G(k') is zero and a rational
function of k', respectively, and the equation may be
solved by the method used by Castillejo, Dalitz, and
Dyson. On the other hand, for the square well G(k') has
an essential singularity at infinity, and nonuniqueness
of the solutions of Eq. (15) cannot be established by
this means.

If bound states are present, the inhomogeneous term
of Eq. (1) must be appropriately altered to exhibit the
poles of the scattering amplitude, but the conclusions
of this paper are unchanged.

R(k') =E 'Q; p; tan(b~)/g; p;, b, )~ a. (12')

Excrlp/e 2.—Consider the form (11) with

R(k') =E ' tanL(a+3/k')E— ]. (13)

"It is the unitarity condition which rules out the otherwise
acceptable solution R(k2) =Z i tan{[a+2„n„'/(P„r—X2)7'}.
Such a solution is not unitary along the discrete set of points
E=~p„.

'0 If V(r) satisfies Jo"r"
~
V(r) ~dr(~ (a=1, 2), then if So(k)

has no redundant poles (poles which do not correspond to bound
states), it must have an essential singularity at infinity. The
conditions on V(r) imply a theorem of N. Levinson [Kgl. Danske
Videnskab. Selskab, Mat:fys Medd. 25,. No. 9 (1949)7 that
J-' "dkSo'(k)/So(k)=0 if there are no bound states If So(k).
= 1+0(k ') at infinity in the upper half-plane, then the absence of
poles for So(k) in the upper half-plane implies an absence of zeros.
But as we have So(k)SO(—k}= 1, this implies So (k) —=1.If, however,
S0(k) is not identically equal to unity, and there are no redundant
poles, then S0(k) does not approach unity at infinity. Moreover,
since we have Sp(k}Sp( k)=1, its behavior at infinity depends
upon the direction of approach."E.P. Wigner, Ann. Math. 53, 36 (1950).


